一种液晶取向剂、液晶取向膜以及液晶显示元件的制作方法-k8凯发

文档序号:11935422阅读:584来源:国知局

本发明涉及一种液晶取向剂、液晶取向膜以及液晶显示元件,属于液晶显示技术领域。



背景技术:

聚酰亚胺作为热稳定性最高的材料被广泛应用在电子行业,比如聚酰亚胺膜可被用作液晶取向膜。液晶取向膜通常做法是将含有聚酰胺酸或聚酰亚胺的聚合物涂覆在基板表面,然后经过一个热制程和一个取向制程即可制得液晶取向膜。

目前随着对液晶显示器长寿命的要求不断提高,相应地对液晶取向膜的热稳定性要求也变得更加严格。

因此如何提供一种具有优秀的热稳定性的液晶取向膜是摆在该领域专业技术人员面前的亟待解决的问题。

由于酰胺基团中的c-n键键能比醚键中的c-o键和酯基基团中的c-o键要强,因此用含有酰胺基团的二胺化合物做成的液晶取向膜能够提高液晶显示器的使用寿命。



技术实现要素:

本发明的目的之一,是提供一种液晶取向剂。本发明的液晶取向剂由含有酰胺类的二胺单体与其它四羧酸二酐单体聚合而成;由于二胺单体中的酰胺基较醚基及酯基更加稳定,因此,本发明的液晶取向膜具有优秀的热稳定性等优点,可提高液晶显示器的使用寿命。

本发明解决上述技术问题的技术方案如下:一种液晶取向剂,包括由混合物反应获得的聚合物(a)和溶剂(b),其中混合物包含一个四羧酸二酐组份(a)和一个二胺组份(b),所述二胺组份(b)至少包括由式i表示的二胺化合物(b-1),所述二胺化合物(b-1)具有如下结构式:

其中,x代表

中的一种,

r1代表单键、碳数1-4的烷基或碳数1-4的烷氧基,

r2代表氟原子、氯原子或溴原子,

r3代表碳数1-8的烷基或碳数1-8的烷氧基,

m1代表0-4的整数,

m、n各自独立代表0-2的整数。

与现有技术相比,本发明的液晶取向剂由含有酰胺类的二胺单体与其它四羧酸二酐单体聚合而成;由于二胺单体中的酰胺基较醚基及酯基更加稳定,因此,本发明的液晶取向膜具有优秀的热稳定性等优点,可提高液晶显示器的使用寿命。

在上述技术方案的基础上,本发明还可以做如下改进。

进一步,所述聚合物(a)为聚酰胺酸、聚酰亚胺中的一种或两种的混合物。

其中,上述聚酰胺酸的制备方法,可以采用常规方法,包括如下步骤:先将包含四羧酸二酐组份(a)和二胺组份(b)的混合物溶解于溶剂中,并于0-100℃的温度下进行聚合反应1-24小时,然后在减压下蒸掉溶剂得到聚酰胺酸,或者将反应体系倾倒入大量的不良溶剂中,将析出物干燥得到聚酰胺酸。

进一步,所述溶剂(b)为n-甲基-2-吡咯烷酮、γ-丁内酯、n,n-二甲基乙酰胺、n,n-二甲基甲酰胺、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、乙二醇甲乙醚、乙二醇二甲醚、二甘醇单甲醚乙酯中的一种或多种的混合物。其中,所述聚合物(a)和所述溶剂(b)的重量比为1:5-80。

进一步,所述四羧酸二酐组份(a)为1,2,3,4-环丁烷四羧酸二酐、1,2,3,4-环戊烷四羧酸二酐、2,3,5-三羧基环戊基乙酸二酐、均苯四羧酸二酐、1,2,4,5-环己烷四羧酸二酐、3,3’,4,4’-联苯四羧酸二酐、3,3’,4,4’-联苯砜四羧酸二酐中的一种或多种的混合物。

进一步,所述二胺化合物(b-1),为式i-1到i-5中的一种或多种的混合物:

采用上述进一步的有益效果是:如果液晶取向剂未使用二胺化合物(b-1),由液晶取向剂制备的液晶取向膜的长时间使用的热稳定性会较差。

进一步,所述二胺组份(b)还包括二胺化合物(b-2),所述二胺化合物(b-2)为1,4-二氨基苯、1,3-二氨基苯、1,5-二氨基萘、1,8-二氨基萘、4,4’-二氨基二苯甲烷、4,4’-二氨基二苯醚、1,4-二(4-氨基苯氧基)苯、4,4’-二氨基二苯甲酮、2,2-双[4-(4-氨基苯氧基)苯基]丙烷、2,2-双[4-(4-氨基苯氧基)苯基]六氟丙烷、2,2-双4(氨基苯基)六氟丙烷、4-(4-庚基环己基)苯基-3,5-二氨基苯甲酸酯、2,2’-二甲基-4,4’-二氨基联苯、4,4’-二氨基苯甲酰胺,1-(4-(4-庚基环己基)苯氧基)-2,4-二氨基苯、3,5-二氨基苯甲酸中的一种或多种的混合物。

进一步,所述四羧酸二酐组份(a)和所述二胺组份(b)的摩尔比为100:20-200。

更进一步,所述四羧酸二酐组份(a)和所述二胺组份(b)的摩尔比为100:80-120。

进一步,所述四羧酸二酐组份(a)和所述二胺化合物(b-1)的摩尔比为100:5-90。

更进一步,所述四羧酸二酐组份(a)和所述二胺化合物(b-1)的摩尔比为100:20-80。

更进一步,所述四羧酸二酐组份(a)和所述二胺化合物(b-1)的摩尔比为100:30-70。

进一步,所述二胺组份(b)和所述二胺化合物(b-2)的摩尔比为100:30-90。

更进一步,所述二胺组份(b)和所述二胺化合物(b-2)的摩尔比为100:40-80。

更进一步,所述二胺组份(b)和所述二胺化合物(b-2)的摩尔比为100:50-70。

用于聚合反应的溶剂与液晶取向剂中的溶剂(b)可以相同或不同,且用于聚合反应的溶剂并无特别的限制,只要能溶解反应物即可。溶剂包括但不限于n-甲基-2-吡咯烷酮、n,n-二甲基乙酰胺、n,n-二甲基甲酰胺、γ-丁内酯。其中,所述混合物和所述溶剂的摩尔比为1:5-80。

值得注意的是,聚合反应的溶剂可以并用适量的不良溶剂,其中不良溶剂不会造成聚酰胺酸析出。不良溶剂可以单独使用或混合使用,包括但不限于(1)醇类:甲醇、乙醇、异丙醇、环己醇或乙二醇;(2)酮类:丙酮、甲乙酮、甲基异丁酮或环丁酮;(3)酯类:乙酸甲酯、乙酸乙酯或乙酸丁酯;(4)醚类:乙醚、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、乙二醇甲乙醚、乙二醇二甲醚或四氢呋喃;(5)卤代烃:二氯甲烷、氯苯或1,2-二氯乙烷。其中,所述不良溶剂占溶剂总重量的0-60%。

在上述技术方案的基础上,本发明还可以做如下改进。

进一步,所述不良溶剂占溶剂总重量的0-30%。

上述制备聚酰亚胺的制备方法,可以采用常规方法,包括如下步骤:在脱水剂和催化剂存在下,将以上述方法得到的聚酰胺酸加热。

在此过程中,聚酰胺酸中的酰胺酸官能团通过亚胺化反应会转变成酰亚胺基团。

亚胺化反应的溶剂可以与液晶取向剂中的溶剂(b)相同,故不再赘述。

其中,所述于聚酰胺酸和所述亚胺化反应溶剂的重量比为1:5-30;所述酰胺酸的亚胺化率为30-100%;所述亚胺化反应的温度为0-100℃,反应时间为1-120小时;所述脱水剂可以选择一个酸酐类化合物,比如醋酸酐、丙酸酐或三氟醋酸酐;所述聚酰胺酸和所述脱水剂的摩尔比为1:1-10;所述催化剂可选自吡啶、三甲胺或三乙胺;所述脱水剂和所述催化剂的摩尔比为1:0.1-5。

在上述技术方案的基础上,本发明还可以做如下改进。

进一步,所述酰胺酸的亚胺化率为55-100%。

进一步,所述亚胺化反应的温度为20-60℃,反应时间为2-30小时。

在不影响本发明的功效范围下,该聚酰胺酸聚合物及该聚酰亚胺化合物为通过分子量调节剂调节后的末端修饰型聚合物。通过使用末端修饰型的聚合物,该液晶取向剂的涂布性能会有所提高。该末端修饰型聚合物可通过在制备聚酰胺酸的聚合反应中添加一种分子量调节剂来制备。该分子量调节剂包括但不局限于:(1)一元酸酐,比如马来酸酐、邻苯二甲酸酐或琥珀酸酐;(2)单胺化合物,比如苯胺、正丁胺、正戊胺、正己胺、正庚胺或正辛胺;(3)单异氰酸酯类化合物,比如异氰酸苯酯或异氰酸萘酯。其中,所述聚酰胺酸和所述分子量调节剂的摩尔比为1:0.1。

在上述技术方案的基础上,本发明还可以做如下改进。

进一步,所述聚酰胺酸和所述分子量调节剂的摩尔比为1:0.05。

在不影响本发明的功效范围下,根据本发明的液晶取向剂包含一种添加剂(c)。该添加剂(c)为一种环氧类化合物或一种具有官能性基团的硅烷类化合物。该添加剂(c)的作用是提高液晶取向膜与基板之间的附着力,该添加剂(c)可单独一种使用也可混合多种使用。

该环氧类化合物包含但不局限于乙二醇二环氧丙基醚、聚乙二醇二环氧丙基醚、丙二醇二环氧丙基醚、聚丙二醇二环氧丙基醚、1,6-已二醇二环氧丙基醚、丙三醇二环氧丙基醚、n,n,n’,n’-四环氧丙基-间-二甲苯二胺、n,n,n’,n’-四环氧丙基-4,4’-二氨基二苯甲烷或3-(n,n-二环氧丙基)氨基丙基三甲氧基硅烷。其中,所述聚合物(a)和所述环氧类化合物的重量比为100:0.1-15。

在上述技术方案的基础上,本发明还可以做如下改进。

进一步,所述聚合物(a)和所述环氧类化合物的重量比为100:1-3。

该具有官能性基团的硅烷类化合物包含但不局限于3-氨基丙基三甲氧基硅烷、3-氨基丙基三乙氧基硅烷、2-氨基丙基三甲氧基硅烷、3-氨基丙基三乙氧基硅烷、n-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷、n-(2-氨基乙基)-3-氨基丙基甲二甲氧基硅烷、n-苯基-3-氨基丙基三甲氧基硅烷或n-双(氧化乙烯)-3-氨基丙基三乙氧基硅烷。其中,所述聚合物(a)和所述具有官能性基团的硅烷类化合物的重量比为100:0-2。

在上述技术方案的基础上,本发明还可以做如下改进。

进一步,所述聚合物(a)和所述具有官能性基团的硅烷类化合物的重量比为100:0.02-0.2。

该液晶取向剂可通过将聚合物(a)和添加剂(c)在溶剂(b)中于20-100℃在搅拌下混合制得。

本发明的目的之二,是提供一种液晶取向膜。

本发明解决上述技术问题的技术方案如下:一种液晶取向膜,由如上所述的液晶取向剂制成。

本发明的液晶取向膜,由于含有本发明的液晶取向剂,而取向剂所用二胺单体中的酰胺基较醚基及酯基更加稳定,因此,本发明的液晶取向膜具有优秀的热稳定性等优点。体现在实施例中,利用该取向剂制备的液晶显示元件的δvhr(%)≤5,热稳定性能优秀。

上述液晶取向膜的制备方法,为常规方法,比如辊涂布法、旋涂布法、印刷涂布法、喷墨法等,包括如下步骤:将液晶取向剂涂覆在一个基板表面形成预涂层;接着将该预涂层经过预烘处理、后烘处理剂取向处理以形成一种取向膜。

上述提到的基板是一种带有普通电极的透明材料。该透明材料包含但不局限于钠钙玻璃、硬质玻璃、无碱玻璃、石英玻璃、聚乙烯对苯二甲酸酯、聚丁烯对苯二甲酸酯、聚醚砜、聚碳酸酯。该普通电极可包含一种像ito、izo或itzo的透明导电材料。

该预烘的目的是去除预涂层中的大部分溶剂。该预烘处理的操作温度为30-200℃,优选为40-150℃,该预烘处理的时间为1-10分钟,优选为2-5分钟。

该后烘的目的是提高预涂层的亚胺化率。该后烘处理的操作温度为80-300℃,优选为120-250℃;该后烘处理的时间为5-200分钟,优选为5-150分钟;该预涂层经后烘处理后的膜厚为0.01-1.0μm,优选为0.05-0.5μm。

该取向处理方式并无特别的限制,可以用尼龙、人造丝、棉类或其他纤维所做成的布料缠绕在滚筒上,并以一定方向摩擦进行取向的方式来操作。

本发明的目的之三,是提供一种液晶显示元件。

本发明解决上述技术问题的技术方案如下:一种液晶显示元件,由如上所述的液晶取向剂制成。

本发明的液晶显示元件,由于含有本发明的液晶取向剂,而取向剂所用二胺单体中的酰胺基较醚基及酯基更加稳定,因此,本发明的液晶取向膜具有优秀的热稳定性等优点,因此可提高液晶显示器的使用寿命。

上述液晶显示元件的制备方法,包括如下步骤:准备两片基板,每片基板上均有一层液晶取向膜,并于两层基板中间充满液晶以制得一个液晶盒。

用本发明中的液晶取向剂制得的液晶显示元件适合各种液晶显示元件,比如扭曲向列型(tn)、超扭曲向列型(stn)、垂直取向型(va)、共面切换型(ips)或边缘场开关型(ffs)。在上述液晶显示元件中,优选va型液晶显示元件。

本发明的有益效果是:

1.与现有技术相比,本发明的液晶取向剂由含有酰胺类的二胺单体与其它四羧酸二酐单体聚合而成;由于二胺单体中的酰胺基较醚基及酯基更加稳定,因此,本发明的液晶取向膜具有优秀的热稳定性等优点,可提高液晶显示器的使用寿命。

2.与现有技术相比,本发明的液晶取向膜具有优秀的热稳定性等优点。

3.与现有技术相比,本发明的液晶显示器的使用寿命更长。

4.本发明方法简单,市场前景广阔,适合规模化应用推广。

附图说明

图1为本发明中的化合物b-1-3的1h-nmr谱图。

具体实施方式

以下结合具体附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。

在下面具体例中,仅以va型的液晶显示元件对该液晶取向剂进行说明,但本发明并不限于此。

(一)化合物的合成例

二胺化合物(b-1)的合成例

合成例1

结构式(i-1)所代表的化合物可根据下面的合成路线1来合成:

(1)化合物(b-1-1a)的合成

于1000ml的三口圆底烧瓶中投入4’-(4-戊基环己基)-4-氨基-联苯(32.2g,100毫摩尔)、三乙胺(10.1g,100毫摩尔)和400g四氢呋喃,所得悬浊液在室温下搅拌10分钟后得到一个无色的溶液,随后将该溶液降温至0℃,搅拌下,将含有2-(2,4-二硝基苯基)乙酰氯(24.5g,100毫摩尔)和80g四氢呋喃的溶液滴入体系中,体系放热,控制滴加速度以保持内温低于20℃。在所有溶液都加入后,在15-20℃下保温搅拌2小时。反应在经气相色谱(gc)检测完成后,停止搅拌然后抽滤,搅拌下将滤液倒入2l水中,将所得悬浊液抽滤将得到一种黄色滤饼,将黄色滤饼与200g乙醇混合并搅拌30分钟,经过抽滤和烘干,将以85%的收率得到一种黄色的固体化合物(b-1-1a)。

(2)化合物(b-1-1)的合成

于1l高压釜中投入获得的化合物(b-1-1a)(53.0g,100毫摩尔)、5%的钯碳(5.3g,含水,固含量为30%)和400g四氢呋喃,将高压釜密封,用氢气置换3-5次后,氢气加压至0.5-1.0mpa,搅拌下于40-45℃反应。反应结束后,通过一个薄膜将催化剂除掉,然后脱除溶剂,所得固体加入300g乙醇并搅拌30分钟,经过抽滤和烘干,将以95%的收率得到一种黄色的固体化合物(b-1-1)。

该化合物(b-1-1)的1h-nmr数据(500mhz,chcl3-d1,δ,ppm)为:0.88(3h,ch3),1.25-1.31(8h,4×ch2),1.43(1h,ch),1.52-1.86(8h,4×ch2-cy),2.72(1h,ch-cy),5.31(1h,nh),3.55(2h,ch2),6.27(4h,2×nh2),5.65-6.73(3h,3×ch-ph),7.36-7.87(8h,8×ch-ph)。

合成例2

结构式(i-2)所代表的化合物可根据下面的合成路线2来合成:

(1)化合物(b-1-2a)的合成

于1000ml的三口圆底烧瓶中投入4-(4-戊基环己基)苯胺(24.5g,100毫摩尔)、三乙胺(10.1g,100毫摩尔)和400g四氢呋喃,所得悬浊液在室温下搅拌10分钟后得到一个无色的溶液,随后将该溶液降温至0℃,搅拌下,将含有2-(2,4-二硝基苯基)乙酰氯(24.5g,100毫摩尔)和80g四氢呋喃的溶液滴入体系中,体系放热,控制滴加速度以保持内温低于20℃。在所有溶液都加入后,在15-20℃下保温搅拌2小时。反应在经气相色谱(gc)检测完成后,停止搅拌然后抽滤,搅拌下将滤液倒入2l水中,将所得悬浊液抽滤将得到一种黄色滤饼,将黄色滤饼与200g乙醇混合并搅拌30分钟,经过抽滤和烘干,将以83%的收率得到一种黄色的固体化合物(b-1-2a)。

(2)化合物(b-1-2)的合成

于1l高压釜中投入获得的化合物(b-1-2a)(45.4g,100毫摩尔),5%的钯碳(4.5g,含水,固含量为30%)和400g四氢呋喃,将高压釜密封,用氢气置换3-5次后,氢气加压至0.5-1.0mpa,搅拌下于40-45℃反应。反应结束后,通过一个薄膜将催化剂除掉,然后脱除溶剂,所得固体加入300g乙醇并搅拌30分钟,经过抽滤和烘干,将以90%的收率得到一种黄色的固体化合物(b-1-2)。

该化合物(b-1-2)的1h-nmr数据(500mhz,chcl3-d1,δ,ppm)为:0.88(3h,ch3),1.25-1.31(8h,4×ch2),1.43(1h,ch),1.52-1.86(8h,4×ch2-cy),2.72(1h,ch-cy),5.31(1h,nh),3.55(2h,ch2),6.27(4h,2×nh2),5.65-6.73(3h,3×ch-ph),7.28-7.60(4h,4×ch-ph).

合成例3

结构式(i-3)所代表的化合物可根据下面的合成路线3来合成:

(1)化合物(b-1-3a)的合成

在氮气氛围下,于1000ml的三口圆底烧瓶中投入4-(4-戊基环己基)苯硼酸(27.4g,100毫摩尔)、4-溴-2-氟-苯胺(19.1g,100毫摩尔)、30%氢氧化钠水溶液(26.7g,200毫摩尔)和400g乙醇,所得悬浊液在室温下搅拌10分钟将得到一个无色的溶液,将催化剂pd(oac)2(0.224g,1毫摩尔)加入体系,体系放热,内温可升至50-60℃,然后加热至回流保温搅拌2小时。反应在经气相色谱(gc)检测完成后,停止搅拌然后抽滤,将滤饼与200g乙醇混合并保持搅拌30分钟,经过抽滤及烘干,将以93%的收率得到一种黄色的固体化合物(b-1-3a)。

(2)化合物(b-1-3b)的合成

于1000ml的三口圆底烧瓶中投入所得的化合物(b-1-3a)(34.0g,100毫摩尔)、三乙胺(10.1g,100毫摩尔)和400g四氢呋喃,所得悬浊液在室温下搅拌10分钟后得到一个无色的溶液,随后将该溶液降温至0℃,搅拌下,将含有3.5-二硝基苯甲酰氯(23.1g,100毫摩尔)和80g四氢呋喃的溶液滴入体系中,体系放热,控制滴加速度以保持内温低于20℃。在所有溶液都加入后,在15-20℃下保温搅拌2小时。反应在经气相色谱(gc)检测完成后,停止搅拌然后抽滤,搅拌下将滤液倒入2l水中,将所得悬浊液抽滤将得到一种黄色滤饼,将黄色滤饼与200g乙醇混合并搅拌30分钟,经过抽滤和烘干,将以80%的收率得到一种黄色的固体化合物(b-1-3b)。

(3)化合物(b-1-3)的合成

于1l高压釜中投入获得的化合物(b-1-3b)(53.4g,100毫摩尔)、5%的钯碳(5.3g,含水,固含量为30%)、400g四氢呋喃,将高压釜密封,用氢气置换3-5次后,氢气加压至0.5-1.0mpa,搅拌下于40-45℃反应。反应结束后,通过一个薄膜将催化剂除掉,然后脱除溶剂,所得固体加入300g乙醇并搅拌30分钟,经过抽滤和烘干,将以94%的收率得到一种黄色的固体化合物(b-1-3)。

如图1所示,该化合物(b-1-3)的1h-nmr数据(500mhz,chcl3-d1,δ,ppm)为:0.88(3h,ch3),1.25-1.31(8h,4×ch2),1.43(1h,ch),1.52-1.86(8h,4×ch2-cy),2.72(1h,ch-cy),6.02(1h,ch-ph),6.27(4h,2×nh2),6.45(2h,2×ch-ph),7.36-7.37(4h,4×ch-ph),7.50(1h,ch-ph),7.55(1h,ch-ph),7.85(1h,ch-ph),9.65(1h,nh)。

(二)聚合物(a)的合成例

合成例a-1-1

在氮气氛围下,于1000ml的三口圆底烧瓶中投入结构式(i-1)所代表的二胺化合物(47.0g,100毫摩尔)(以下简称b-1-1),1,4-二氨基苯(16.2g,150毫摩尔)(以下简称b-2-1)和600g的n-甲基-2-吡咯烷酮(以下简称nmp),将所得悬浮液搅拌直至得到一个黄色的溶液。然后将49.0g(250毫摩尔)的1,2,3,4-环丁烷四羧酸二酐(以下简称a-1)和100g nmp加入体系。反应放热,室温搅拌4小时,得到在nmp中的聚酰胺酸聚合物(a-1-1)。

合成例a-1-2至比较合成例a-2-1至a-2-4

合成例a-1-2至比较合成例a-2-1至a-2-4可通过与合成例a-1-1相同的方法制备,不同之处在于:所用单体的种类及用量有所改变,具体结果见下表1和表2,这里不再赘述。

在表1和表2中:

a-1:1,2,3,4-环丁烷四羧酸二酐

a-2:2,3,5-三羧基环戊基乙酸二酐

a-3:均苯四甲酸二酐

a-4:3,3’,4,4’-联苯四羧酸二酐

b-1-1:由式(i-1)表示的化合物

b-1-2:由式(i-2)表示的化合物

b-1-3:由式(i-3)表示的化合物

b-2-1:1,4-二氨基苯

b-2-2:4,4’-二氨基联苯甲烷

b-2-3:4,4’-二氨基联苯醚

b-2-4:1-(4-(4-庚基环己基)苯氧基)-2,4-二氨基苯

表1合成例各聚合物所用单体种类及用量

表2比较合成例各聚合物所用单体种类及用量

(三)液晶取向剂、液晶取向膜及液晶显示元件的实施例与比较例

实施例1

a、液晶取向剂

氮气氛围,于三口圆底烧瓶中投入100重量份的聚合物(a-1-1)、900重量份的nmp(以下简称b-1)和800重量份的乙二醇单丁醚(以下简称b-2),体系于室温下搅拌30分钟,然后用0.3μm的滤膜过滤该溶液形成实施例1的液晶取向剂。

b、液晶取向膜及液晶显示元件

用旋涂的方式将上述的液晶取向剂涂覆在两片均具有ito电极的玻璃基板上形成预涂层.经过预烘(热板,100℃,5分钟)和后烘(循环烘箱,220℃,30分钟)将得到两个液晶取向膜,将这两个液晶取向膜经摩擦处理(辊筒直径150mm,旋转速度:500rpm,移动速度:20mm/s,压入量:0.5mm)。

经摩擦处理后,将一种紫外固化胶涂布在这两片玻璃基板其中一片的周边,将3.5μm的间隔子洒在另一片基板上。然后将这两片玻璃基板贴合(5kg,30min),然后用紫外灯照射来固化紫外固化胶。接着将液晶注入并用热板(60℃,30min)熟成,即可获得实施例1的液晶显示元件。

对实施例1的液晶显示元件进行评价,结果见表3。

实施例2至实施例20

液晶取向剂、液晶取向膜及液晶显示元件的实施例2至实施例20可通过与实施例1相同的步骤制备,不同之处在于:所用聚合物(a)、溶剂(b)和添加剂(c)的种类及用量有所改变,见表3。对实施例2至实施例20的液晶显示元件进行评价及结果见表3。

比较实施例1至比较实施例6

液晶取向剂、液晶取向膜及液晶显示元件的比较实施例1至比较实施例6可通过与实施例1相同的步骤制备,不同之处在于:所用聚合物(a)、溶剂(b)和添加剂(c)的种类及用量有所改变,见表4。对比较实施例1至比较实施例6的液晶显示元件进行评价及结果见表4。

评价方法

a、热稳定性

液晶取向膜的热稳定性可通过液晶显示元件的电压保持率可评价(以下简称vhr),进一步而言,电压保持率的检测方法如下.

测试vhr的条件是:施加5v电压,历时60ms后,解除电压,并测量从解除电压起167ms后的vhr(记为vhr1)。然后将该液晶显示元件置于烘箱(60℃)中500h,然后冷却至室温,再用相同的方法测量此时的vhr(记为vhr2)。然后通过公式(v)计算vhr的变化值(记为δvhr(%)),越低的δvhr(%)意味着越好的热稳定性。

<mrow> <mi>δ</mi> <mi>v</mi> <mi>h</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>%</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>vhr</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>vhr</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>vhr</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mo>×</mo> <mn>100</mn> <mi>%</mi> </mrow>

式v

δvhr(%)的评价标准如下所示:

◎:δvhr(%)≤5%,热稳定性优秀,

○:5%<δvhr(%)≤20%,热稳定性良好,

ⅹ:δvhr(%)>20%,热稳定性差。

b、垂直取向性

通过在偏光显微镜下无电压及外加交流电压6v(峰对峰)时,从垂直方向观察液晶显示元件。

评价标准如下所示:

○:没有漏光,

ⅹ:出现不良的白色显示。

在表3和表4中:

b-1:n-甲基-2-吡咯烷酮,

b-2:乙二醇单丁醚,

c-1:n,n,n’,n’-四环氧丙基-4,4’-二氨基二苯甲烷,

c-2:3-氨基丙基三乙氧基硅烷。

表3实施例的液晶显示元件的评价结果

表4比较实施例的液晶显示元件的评价结果

由此可见,与现有技术相比,本发明的液晶取向剂由含有酰胺类的二胺单体与其它四羧酸二酐单体聚合而成;由于二胺单体中的酰胺基较醚基及酯基更加稳定,因此,本发明的液晶取向膜具有优秀的热稳定性等优点,可提高液晶显示器的使用寿命。而且方法简单,市场前景广阔,适合规模化应用推广。

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1   
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
网站地图